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Abstract Propagation of smng magnetoplasma waves is studied with consideration of effects 
of the temporal dispersion. It is shown chat the temporal dispersion in the nonlinear regime 
leads to overmming of the wavefront and generation of the shock waves. An analysis of l e  
evolution of shock waves is canid  out in both nondissipative and weakly dissipative cases. 

1. Introduction 

The present paper is devoted to the propagation of magnetoplasma waves in metals. These 
waves that were predicted by Kaner and Skobov [ll and first observed by Williams 
[2] have been studied rather well both theoretically and experimentally [3] in the past. 
However, it should be noted that the theoretical consideration has been restricted mostly 
to the case of small amplitudes, i.e., it has been carried out within the framework of the 
linear approximation. That is due to the fact that for a long time the electron theory 
of metals was developed exclusively as a Linear science. It was presumed that nonlinear 
effects could hardly occnr in metals because it is impossible to make the electron system 
depart considerably from its equilibrium state. That is why the traditional mechanisms of 
nonlinearity, say ones originating from overheating of electrons, do not work in metals. 
Only recently has it become clear that there is a mechanism of nonlineruity specific for 
metals working even under a weak deviation from the equilibrium. High conductivity, 
which suppresses the action of the already known mechanisms of nonlinearity, is a cause of 
a new one, specific to pure metals at low temperatures. This mechanism is a manifestation 
of the self-action of the field: a magnetic field of a wave affects the electron motion that 
causes the electric current that, in its turn, determines the field structure. This, the so-called 
magnetodynamic, mechanism of nonlinearity has been studied in a number of papers (see, 
e.g., the review I41 and references therein). 

‘Ihe magnetodynamic mechanism of nonlinearity causes a wide range of observable 
effects, such as a deviation of the current-voltage characteristics for thin metal samples 
from Ohm’s law towards a decrease of the resistance 15, 6, 71, an appearance of the 
negative differential resistance [8], a pinch effect [9, 10, 111 and a generation of voltage 
auto-oscillations in the regime of a designated current [ll].  In the radiowave range one 
should mention first a phenomenon of the ‘current states’ [12, 13, 14, 15, 16, 171, an 
appearance of dissipative structures of the electromagnetic field [18] and auto-oscillations 
[19,20], a nonlinear attenuation [21,221 and a nonlinear renormalization of a spectrum of 
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electromagnetic waves [23]. Note that the abovementioned effects are either static or low- 
frequency ones, and the aim of the present paper is to extend a study of the magnetodynamic 
mechanism into the region of higher frequencies where effects of the spatial and temporal 
dispersions of the electromagnetic field play a principal role. 

It is well known that nonlinear processes can lead to an appearance of new field 
structures, having no analogues in the linear case, such as shock waves, solitons, kinks 
etc. The field distribution in media is determined, as a rule, by a joint action of several 
physical processes. Therefore, it  is desirable to know what structures are typical for different 
mechanisms of nonlinearity (acting separately) to be aware of the tendencies that take 
place (and compete) in real situations. So, for example, solitons, that are generated when 
dispersion and overturning contend against each other, are, in some sense, intermediate 
between dispersing wave packets, which are typical of linear media, and shock waves, 
caused by some types of nonlinearity. 

The spatial and temporal dispersions are naturally interrelated phenomena, but in this 
paper we, maybe somewhat artificially, shall separate them and restrict ourselves only to 
the consideration of the temporal one. So, the aim of the present work is to study the 
penetration of a strong wave into a compensated metal taking into account effects of the 
temporal dispersion. 

2. Statement of the problem. Main equations 

We shall consider a semi-infinite metal sample (it occupies the half space x 0) that 
is irradiated by a monochromatic electromagnetic wave of frequency o and amplitude 31. 
There is a constant magnetic field HO parallel to the sample surface and the magnetic field 
of the wave. At the sample boundary x = 0 the value of the total magnetic field H ( x ,  1) is 

H(O,  t )  = H~ + ncos(or). (2.1) 
The magnetic field H ( x .  f )  is assumed to be nonzero everywhere, i.e., 

n < H ~ .  (2.2) 

L M Fisher et a1 

The coordinate system is chosen as depicted in figure 1. 

vacuum 
+ - +  
Ho + Hcosot 

X 
Figure 1. The geometry of the problem. 

Let the external field No be rather strong, i.e., 
v < Q  o < Q  Q=min(Qe, ah) 

Y 
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where U is a relaxation frequency, ne.h = eoHg/m,,hc are the electron and hole Larmor 
frequencies, eo is the elementary charge, me.b are the masses of electrons and holes, and c 
is the speed of light. In this case the temporal dispersion is weak and an expression for the 
current density in a compensated metal can be written as follows: 

Here a dot stands for differentiating with respect to time, VA is the Alfven velocity, 

v,: = H: 
4 a n  (me + mh) 

n is the concentration of eleceons (holes). A derivation of this formula is presented in 
the appendix. One can easily see that the expression obtained is essentially nonlinear with 
respect to H ,  which is typical for the case of strong magnetic fields. Formula (2.4) takes 
into account several current forming mechanisms, that is, 6rst of all, a traditional dissipative 
mechanism. Actually, neglecting derivatives with respect to time in (2.4) one can obtain 
a classical expression for a dc current in a strong magnetic field, Q > U (see, e.g., [25]). 
Besides, formula (2.4) describes the temporal dispersion effects. Partially these effects were 
taken into account by Kaner and Skobov. They used an expression for the current density 
that may be obtained from (2.4) at H = Ho. Such an approach corresponds to the situation 
when the ac amplitude 'H is much less than the dc external magnetic field H .  One can say 
that the first summand in brackets in (2.4) describes a linear temporal dispersion, while the 
second one, proportional to ( a / H ) E ,  is a nonlinear one. An expression for the current 
density similar to (2.4) has been used in [21, 221 where the authors studied the influence of 
weak temporal dispersion (both linear and nonlinear) on the propagation of linear waves. 

For convenience we shall introduce dimensionless fields: 

By means of these designations the Maxwell equations can be rewritten as 

h 
b - -e + VAh2h' + we = 0 

h 

h + VAe' = 0. (2.8) 

Hereafter a prime stands for differentiating with respect to the coordinate x .  The boundary 
condition (2.1) in t e m  of h becomes 

h(O, f) = h i d f )  (2.9) 

where 

hi.@) = 1 +acos(ot) a = 7QHo. (2.10) 

To analyse nonlinear effects caused by the temporal dispersion we shall restrict ourselves 

v <<U (2.11) 

to the situation of a weak dissipation, 

and begin with a nondissipative limit. 
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3. Nondissipative case (v = 0) 

The Maxwell equations at U = 0 read 

h 
h 

.i - - e +  VAh'h' = 0 

h + VAe' 0. 

Set (3.1). (3.2) is a quasilinear system of the hydrodynamical type. It possesses solutions 
with locally related e and h:  

e = f ( h ) .  (3.3) 

Substituting (3.3) in (3.1), (3.2) one can obtain 

(3.4) 

(3.5) 

Expressing, say, h from (3.5) and substituting it in (3.4) one can easily notice that system 
(3.4), (35) admits nontrivial (i.e., nonconstant) solutions only if the function f satisfies the 
following ordinary differential equation: 

which is nothing more than the compatibility condition for equations (3.4), (3.5) considered 
as an algebraic system for h and h'. 

Solving (3.6) in a standard way, one can obtain 

f ( h )  = h 2 ( t  -e- ' )  (3.7) 
where the function e = .$(h/ho) is determined implicitly by 

(3.8) 

and ho is a constant that will be defined below. 
In the case 'H/Ho (< 1 (this case is the most interesting from the experimental point 

of view) formulae (3.7), (3.8) are simplified and the relation between e and h becomes 
explicit. It follows from (3.8) that the function tends to unity as H/Ho + 0. Thus, it 
can be considered as a measure of the nonlinearity of the problem. The expression for e as 
a function of h can now be written as 

(3.9) 
Using (3.7), one can reduce system (3.4), (3.5) to the well known (see, e.g., [NI) 

(3.10) 

e = f (h )  N (h  - ho) + :(h - ho)' for 'H/Ho << 1. 

equation 

h + V(h)h' = 0 

with 

V ( h )  = VAhc(h). (3.11) 
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Its solution satisfying boundary condition (2.10) may be presented implicitly as the solution 
of the following functional equation: 

(3.12) 

After the dependence h(x,  t )  is found, the distribution of the electric field is given by (3.3). 
An important fact following from the second Maxwell equation (3.2) is that the value 

of the electric field averaged with respect to the period of the incident wave is spatially 
homogeneous: 

dt e ( x ,  t) = constant 

Indeed, according to (3.2), 

27T 
a - ( e ( x ) )  = -V; 
ax 

(3.13) 

(3.14) 

since h(x, t )  is a periodic function, with the period & / w .  

as zero, i.e., 
According to the electrical neutrality of the metal, the constant in (3.13) should be taken 

( e @ ) )  = 0. (3.15) 
From (3.15) with x = 0 one can obtain the condition (e(0))  = 0 which should be used to 
determine the constant ho. Thus, it follows from (2.10) that ho has to be a solution of the 
equation 

(3.16) 

where, remember, hi&) = 1 + acos(wt), a = H/Ho. When a is small, ha can be 
expressed, up to the second order in a terms, as 

ho E 1 + ;az for H/Ho < 1. (3.17) 
Since e(0,t) = f ( l  + acoswt) (see (3.3)) and the function f is nonlinear, the 

electric field at the sample surface contains all harmonics. It can be easily shown, by 
expanding e(0,  t )  in the Taylor series in a, that the nth harmonic is contributed by the terms 
(a cosmt)"im with m = 0. 1, . . .. So, when 'H << HO the nth harmonic of the electric field 
at the surface is of order (HIHo)". Using (3.9). one can easily obtain some first terms of 
the Fourier series for e(0.  t ) :  

e ( 0 , t ) r ( a - ~ a 3 ) c o s w t + ~ a 2 c o s ~ w r  f o r ' H / ~ o < 1 .  (3.18) 
This immediately provides the expression for the surface impedance: 

(3.19) 

where &(O) is the first harmonic of the electric field at the surface. Let us note here that 
the surface impedance does not contain the imaginary part and deviates from its linear value 
by the quantity of order (H/Ho)'. 

Solutions (3.12), (3.9) admit passing to the linear limit ('H/Ho -+ 0). Rewriting (3.9) 
as e = h - 1 and putting V(h) = V, in (3.12) one can obtain the expressions for the well 
known magnetoplasma wave. 

Thus, equations (3.12), (3.9) describe the electromagnetic wave which is the nonlinear 
analogue of the magnetoplasma one. This fact is reflected, in particular, in expression 
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(3.19). Indeed, the surface impedance is real only in the case of the propagation of the 
undamped wave. 

For small, but finite, values of 'HIHO the main peculiarity of the obtained solutions is 
steepening and overtuming of the wavefront, i.e., generation of the shock waves [24]. The 
distribution of the magnetic field, at a given moment of time, described by solution (3.12) 
is depicted in figure 2. 

t M Fisher et al 

I F 

0 X 
Figure 2 Distribution of the dimensionless magnenetic field in the nondissipative case (U = 0) 
for f = 0, (I = 0.1. 

The points x = xo where the wavefront oveltums are determined by the condition 
h'(x0, I )  400. (3.20) 

It is easy to show that the overtuming point can never be located at the surface of the metal 
(x&) # 0). Whdz propagating from the sample boundary, the wave oscillates many times 
with the scale AA = V,/o, before the overtuming takes place, 

(3.21) 

So, the considered electromagnetic wave is a chain of the shock waves and has saw-toothed 
shape only at distances from the sample surface large in comparison with the wavelength 
AA. 

4. Weak-dissipation case (v << U). Current rectifying effect 

The main effect caused by the dissipation is the fact that all oscillating components of the 
field (both magnetic and electric) attenuate while propagating from the irradiated surface 
into the metal bulk. In so doing the electric field tends to zero, while the magnetic one 
tends to some constant In the linear situation the limiting value of the magnetic field H 
is the value of the external dc field Ho. or, in other words, h -+ 1 as x -+ CO. In the 
case considered joint action of the nonlinearity and dissipation causes an effect of current 
rectifying, which leads to an appearance of the induced magnetic moment, i.e., 

rim h(x ,  1 )  = h,  # 1. (4.1) 
X " c c  

The value of h, should be determined from the Maxwell equations (2.7). (2.8). At present, 
we cannot solve them for arbitrw value of the parameter a = 'H/Ho, but if we restrict 
ourselves to the case 'H << Ho, the problem of evaluating h ,  becomes rather easy. 
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Averaging equation (2.7) over the period of the incident wave and using the fact that 
( e )  = 0 (see the derivation of formula (3.15)) one can get 

VA (h’h‘) - (;E?) = 0. (4.2) 

This relation, after some straightforward but rather cumbersome transformations, leads to 
the following one: 

1 (E + $) = & ($ (i - ;e h + ue)) . 
ax 3 (4.3) 

Since the electric field e as well as the parameter a are small, we can neglect the r.h.s. in 
equation (4.3). Then, after integrating over x from zero to infinity, taking into account that 
(h3) 

(4.4) 

h&, (e )  + 0, and omitting the terms of the third order in a, one can get 

hk, = (h3 + ie’))I,, . 
According to (2.1 l), we can naturally assume that the dissipation does not change the value 
of the electric field near the surface in the main order in a.  So, we can use result (3.18) 
obtained for the nondissipative case. Finally, the limiting value of the magnetic field can 
be written as 

5. Weak shock waves 

To investigate a joint action of the temporal dispersion and the dissipation we shall reshict 
ourselves to the situation when the amplitude of the incident wave is much less than the 
external dc magnetic field ‘FI << Ho. In this case we can neglect the term proportional to 
h in equation (2.7) and write the Maxwell equations as 

e! -,- ue + VAh’h’ = 0 

h + VAe‘ = 0. 

(5.1) 

(5.2) 

In what follows we shall solve system (5.1), (5.2) assuming the dissipation to be weak 
(2.11). 

As was shown in section 4, the dissipation term in (5.1), however small it could he, 
leads to the qualitative transformation of the solution: instead of an undamped wave (see 
section 3) we have the field distribution with a constant value (4.5) at infinity. So, we 
cannot apply a simple perturbation theory starting from the solution of equations (U), (5.2) 
with U = 0. The arguments below are to ground our approach. 

After excluding the electric field from (5.1) and (5.2) we can get the equation for A ,  

i; - v: (h’h’Y+ uh = 0 (5.3) 
which can be rewritten as 

(5.4) 

Here we have factorized the second-order nonlinear wave operator, presenting it as a product 
of two first-order operators. Each of them is responsible for the waves running in one of two 
possible directions. This means that in the absence of dissipation (for v = 0) one may solve 
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the first-order equation h + VAhh’ = 0 (compare with (3.10)) instead of the second-order 
one. 

It turns out that it is possible to continue the factorization procedure to take into account 
partially the dissipation as well. Indeed, one can straightforwardly check that equation (5.3) 
is equivalent to the following one: 

L M Fisher et a1 

---h uZ ( 4-- h l / t )  ( 1--  h”) =o. 
18 h3/2 h3/2 (5.5) 

Inequality (2.11) enables us to neglect the term quadratic in U in (5.5) and to reduce the 
problem to solving the simpler equation 

h +  VAhh‘+ Eh (1 - $) = O  
3 

under the boundary conditions 
h(0, t) = hin@) = 1 + U  C O S O ~  

h ( w , t )  = h,. 
Just the solution of set (5.6H5.8) is suggested to be used as an acceptable approximation 
for the description of the field distribution. Using the method of characteristics one can get 

where r ( x ,  t )  is determined by the relation 

6 = ~ r d 7 ’ ( h ~ z +  [hT,/”(t -7’) -h~z]exp(--f)}z/3. V (5.10) 

This distribution of the magnetic field is presented schematically in figure 3. 

I +a 

h, 

I - a  

0 X 
Figure 3. Distribution of the dimensionless magnetic field in the weakly dissipative case 
(v  << 0). 

An analysis of the results obtained enables us to establish some features of the magnetic 
field distribution. So, it follows from (5.10) that r, and consequently h,  are periodic 
functions of f ,  i.e., the dissipation does not change the period of the temporal oscillations. 
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At large distances from the metal surface r c x /  V,, where 

v, = VAhm. (5.11) 

In that region the magnetic field distribution is given by 

(5.12) 
2 h7,/2 ( t  - x/V,)  

h(x,  r )  i3 h ,  1 + [ [ h g Z  

(5.13) 

Thus, we have obtained the spatial attenuation law and the damping scale L ,  of the wave. 
It should be noted that a decrease of the wave amplitude is accompanied by the increase 

of the wave velocity in the metal bulk V, > VA. 
Besides, the dissipation hinders overturning of the wavefront. The formation of the 

shock waves does not occur if the value of v is higher than some critical one, i.e. a threshold 
effect exists. One can obtain a qualitative criterion for the occurrence of discontinuity in 
the wave solution. The shock waves exist if the overturning scale xo (see (3.21)) is much 
higher than the dissipation length L,, or 

X V  - >> -. 
Ho 0 

(5.14) 

A more careful analysis performed on the basis of the methods [24] gives a similar result. 

6. Conclusion 

We have considered the propagation of a strong magnetoplasma wave taking into account 
effects of the temporal dispersion. It has been shown that the magnetodynamic mechanism of 
nonlinearity leads to the overturning of the wavefront and generation of the shock waves. It 
should be noted that far from all questions related to the theory of the shock magnetoplasma 
waves have been discussed, that is, first of all, the problem mentioned in section 3 of the 
wavefront description. To solve this problem correctly it is necessary to include in our 
consideration the mechanisms that stabilize the overturning. The most important of them 
in our opinion is the spatial dispersion. Other questions are related to the geometty of the 
problem. We have considered a semi-infinite sample, that enabled us to obtain the shock 
wave 'in pure form'. It seems interesting to study an influence of the boundaries, all the 
more since in the nonlinear propagation regime the superposition principle does not hold, 
and rereflections of waves can lead to nontrivial results. These and some other questions 
are worthy of special consideration. 
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Appendix 

The electrodynamics of metals is described by the Maxwell equations 

L M Fisher et al 

I aH 
(A.1) 

4n . curl H = -3 curl E = 
c c at 

with the current density j given by 

The distribution function f ,  depending on the position vector T and the velocity v, should 
be found from the kinetic Boltzmann equation 

where fF is the Fermi distribution function depending on the energy E = m,v2/2 only. The 
kinetic equation is usually solved by the method of characteristics which may be defined 
by the motion equations for electrons, 

Generally speaking, system (A.lb(A.4) should be solved self-consistently. However, 
this problem is unsolvable and usually it is simplified using various physical reasons. We 
shall assume E and H to be slowly varying functions of x and t and linearize the Boltzmann 
equation with respect to small electric field E. This enables us to present the distribution 
function f as 

(A.5) 
and to obtain the following equation for the small addition f :  

f = H E )  - ( a fF /aw 

d zfI + V I )  = -eoEu,. 64.6) 

Here we take into account the geometry of our problem and the fact that the Hall effect is 
absent in a compensated metal. Equation (A.6) can be easily solved -=-L dTexp{w(T - t)}E(x(r), r ) u y ( r ) .  *,(I) 

ea 
(A.7) 

The characteristics x ( r )  and W ( T )  are determined by the equations 

The magnetodynamic mechanism of nonlinearity is related to the magnetic component of 
the Lorentz force. That is why we neglect the term proportional to E but take into account 
the total magnetic field H(x,  t) in (A.8). Using (AX) one can take the integral in (A.7) by 
Parts. 

Since we consider the case of the weak dispersion (2.3) only, we can take the expression in 
braces outside the integral sign and use solutions of the motion equations at constant fields 
to evaluate the remaining integral. That leads to the following expression for f: 

-= -  f E  (A.10) 
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After substituting (A.lO) into (A.2) and calculating the arising integrals, the expression 
for the electron current density takes the form 

nm.c2 
Hl 

j y  = ~ (A. 11) 

Taking into account an analogous contribution from the holes we obtain the expression 
(2.4) for the current density. 
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